Functional roles of 3′-terminal structures of template RNA during in vivo retrotransposition of non-LTR retrotransposon, R1Bm
نویسندگان
چکیده
R1Bm is a non-LTR retrotransposon found specifically within 28S rRNA genes of the silkworm. Different from other non-LTR retrotransposons encoding two open reading frames (ORFs), R1Bm structurally lacks a poly (A) tract at its 3' end. To study how R1Bm initiates reverse transcription from the poly (A)-less template RNA, we established an in vivo retrotransposition system using recombinant baculovirus, and characterized retrotransposition activities of R1Bm. Target-primed reverse transcription (TPRT) of R1Bm occurred from the cleavage site generated by endonuclease (EN). The 147 bp of 3'-untranslated region (3'UTR) was essential for efficient retrotransposition of R1Bm. Even using the complete R1Bm element, however, reverse transcription started from various sites of the template RNA mostly with 5'-UG-3' or 5'-UGU-3' at their 3' ends, which are presumably base-paired with 3' end of the EN-digested 28S rDNA target sequence, 5'-AGTAGATAGGGACA-3'. When the downstream sequence of 28S rDNA target was added to the 3' end of R1 unit, reverse transcription started exactly from the 3' end of 3'UTR and retrotransposition efficiency increased. These results indicate that 3'-terminal structure of template RNA including read-through region interacts with its target rDNA sequences of R1Bm, which plays important roles in initial process of TPRT in vivo.
منابع مشابه
Essential domains for ribonucleoprotein complex formation required for retrotransposition of telomere-specific non-long terminal repeat retrotransposon SART1.
Non-long terminal repeat (LTR) retrotransposons are major components of the higher eukaryotic genome. Most of them have two open reading frames (ORFs): ORF2 encodes mainly the endonuclease and reverse transcriptase domains, but the functional features of ORF1 remain largely unknown. We used telomere-specific non-LTR retrotransposon SART1 in Bombyx mori and clarified essential roles of the ORF1 ...
متن کاملInfluence of RNA structural elements on Ty1 retrotransposition
The long-terminal repeat (LTR)-retrotransposon Ty1 is a mobile genetic element that replicates through an RNA intermediate. Retroelement genomic transcripts contain internal structures fundamental to gene expression and propagation. In addition, long non-coding antisense RNAs overlap the 5'-terminal region of the genomic RNA and confer post-translational copy number control. Although LTR- retro...
متن کاملRetrotransposition of the I factor, a non-long terminal repeat retrotransposon of Drosophila, generates tandem repeats at the 3' end
Non-long terminal repeat (LTR) retrotransposons or LINEs transpose by reverse transcription of an RNA intermediate and are thought to use the 3' hydroxyl of a chromosomal cleavage to initiate synthesis of the first strand of the cDNA. Many of them terminate in a poly(dA) sequence at the 3' end of the coding strand although some, like the I factor of Drosophila melanogaster, have 3' ends formed ...
متن کاملIn vivo RNA localization of I factor, a non-LTR retrotransposon, requires a cis-acting signal in ORF2 and ORF1 protein
According to the current model of non-LTR retrotransposon (NLR) mobilization, co-expression of the RNA transposition intermediate, and the proteins it encodes (ORF1p and ORF2p), is a requisite for the formation of cytoplasmic ribonucleoprotein complexes which contain necessary elements to complete a retrotransposition cycle later in the nucleus. To understand these early processes of NLR mobili...
متن کاملStructure and properties of the esterase from non-LTR retrotransposons suggest a role for lipids in retrotransposition
Non-LTR retrotransposons are mobile genetic elements and play a major role in eukaryotic genome evolution and disease. Similar to retroviruses they encode a reverse transcriptase, but their genomic integration mechanism is fundamentally different, and they lack homologs of the retroviral nucleocapsid-forming protein Gag. Instead, their first open reading frames encode distinct multi-domain prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005